

Cross-situational learning of word-gesture pairs in children and adults: a behavioral and event-related potential study

Candidate: Arianna Colombani

Supervisors: Prof Outi Tuomainen, Prof Mridula Sharma, Prof Natalie Boll-Avetisyan, Dr Amanda Saksida University of Potsdam, Macquarie University

> IDEALAB Winter School 08–12 April 2024 University of Groningen

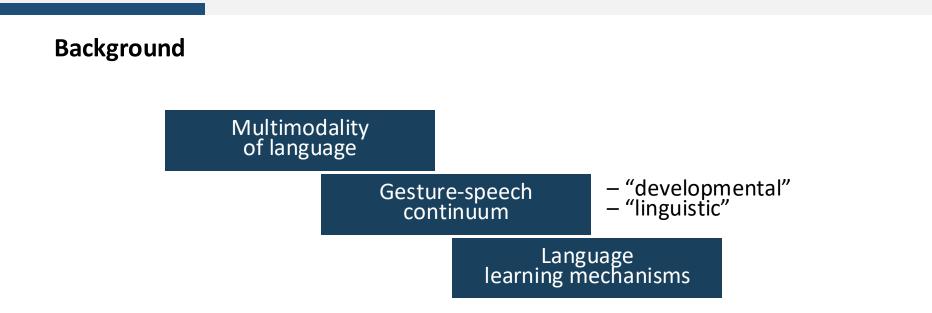
Presentation

- Background
- Research questions
- Methods
- Results
- Conclusions
- Next studies overview

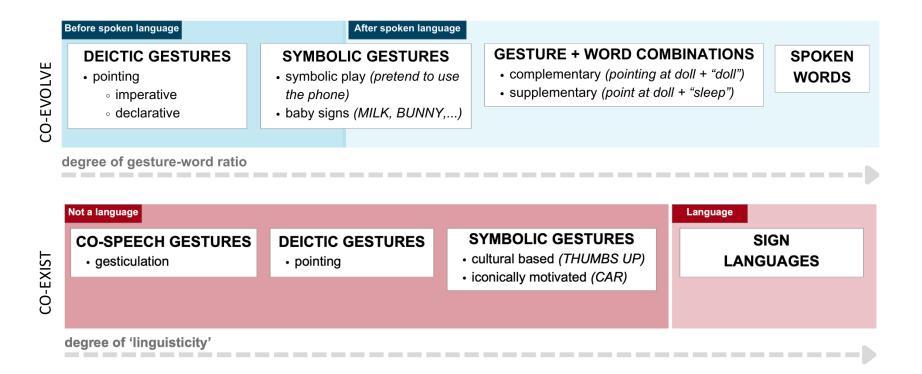
Dr Varghese Peter

University of the Sunshine Coast, Brisbane

Acknowledgments


Madison Brown
Kinys: Guo
Ponouang Loengtoweekul
Yo: Mai
Krieng Puripanup

Lab group at Macquarie University, Sydney


Background

IDEALAB Winter School 2024 - University of Groningen

- Gestures and words share a common neural system
- They develop on a gesture-speech continuum
- Language is learned through innate ability of detecting regularity

Gesture-speech continuum

Gestures vs. signs

- arbitrary
- context-independent
- semantic information
- specific referent
- produced in isolation
- produced with speech

SIGN LANGUAGE SIGNS

¥

Experiment 1

IDEALAB Winter School 2024 - University of Groningen

Cross-situational learning of word-gesture pairs in children and

adults: a behavioral and event-related potential study

- 1. Is it possible to associate novel symbolic gestures with familiar spoken words?
- 2. Is it possible to **build semantic categories** of the novel symbolic gestures?
- 3. In case of semantic violation, do symbolic gestures elicit **similar brain responses** to words?
- 4. Is it possible to learn thanks to statistical learning abilities (cross-situational learning)?

Methods

Methods

Participants

- Children (8–11 y.o) N = 24
- Adults (18–35 y.o) N = 19

Stimuli: 8 word-gesture pairs

 8 words (8 semantic categories) matched with 8 novel symbolic gestures

Measures:

- Behavioral tasks (yes/no task)
- Electrophysiological responses (ERP N400)

Paradigm:

• Cross-situational statistical learning

bed

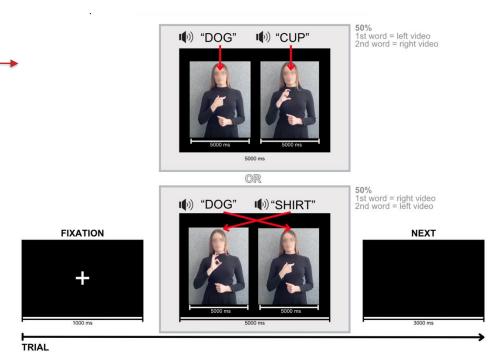
car

cold

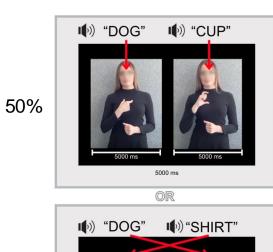
cup

Static depiction of the 8 symbolic gestures and matched target words

Cross-situational statistical learning (Yu & Smith, 2007)


- ambiguous learning trials
- multiple referents and labels
- no explicit indication of word-referent correspondences

detecting co-occurrences across the trials


Chosen to recreate a naturalistic learning environment

1. Familiarization phase (46 trials) ———

- cross-situational learning of wordgestures pairs
- 2. Recognition task (96 trials)
 - check learning of gesture forms (yes/no task)
- 3. Categorization task (96 trials)
 - check semantic learning (yes/no task + EEG and N400)

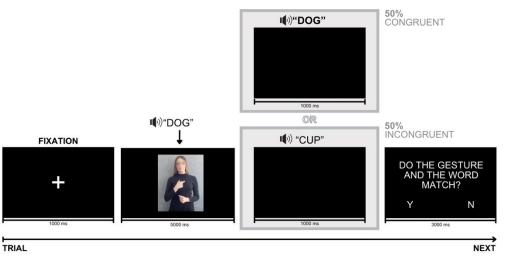
Static depiction of the familiarization task

5000 ms

5000 ms

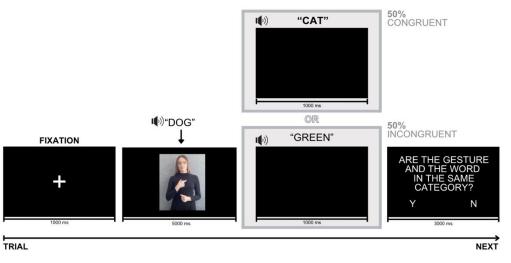
5000 ms

50%



Familiarization task running in the lab

- 1. Familiarization phase (46 trials)
 - cross-situational learning of wordgestures pairs


2. Recognition task (96 trials)

- check learning of gesture forms (yes/no task)
- 3. Categorization task (96 trials)
 - check semantic learning (yes/no task + EEG and N400)

Static depiction of the recognition phase

- 1. Familiarization phase (46 trials)
 - cross-situational learning of wordgestures pairs
- 2. Recognition task (96 trials)
 - check learning of gesture forms (yes/no task)
- 3. Categorization task (96 trials)
 - check semantic learning (yes/no task + EEG and N400)

Static depiction of the categorzation phase

Analysis

Behavioral data:

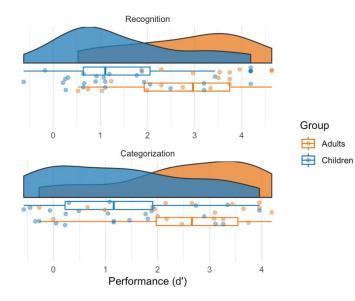
- Accuracy = percentage of correct answers on total number of trials
- D-prime = measure of sensitivity that takes into account participants' response strategy

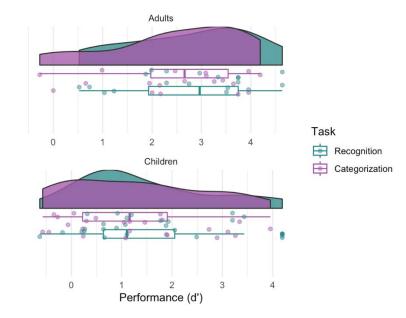
ERP data:

N400

- associated to semantic access/retrieval of the meaning of a word form
- interpreted as a mark of semantic processing (Kutas & Federmeier, 2011)

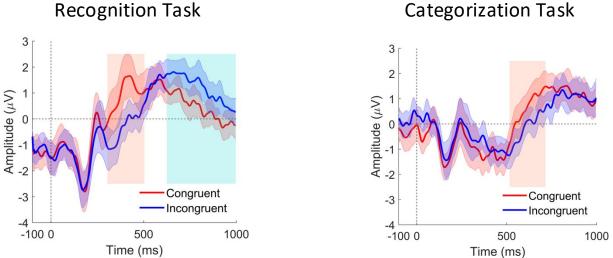
Hypothesis


- 1. Both groups could learn the gesture-word associations
- 2. Adults better children
- 3. Recognition task better than categorization task
- 4. Presence of N400, which reflect the activation of semantic information

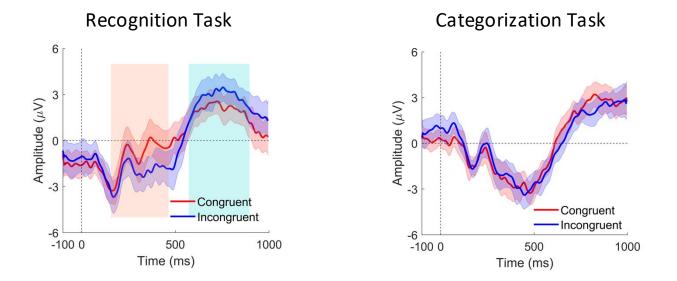

Results

Statistical analysis

d-prime ~ (Task * Group)

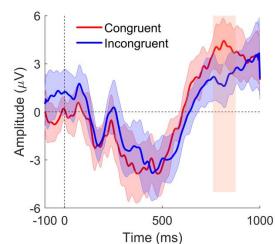


• Significant effect of group


• No effect of task

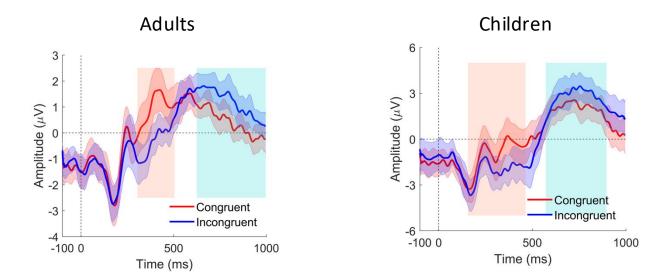
ERP results – Adults

N400 effect is shown in **both tasks** (red shade)


ERP results – Children

N400 effect is shown in recognition task only (red shade)

ERP results – Children


Additional analysis on correctly identified trials only

Categorization Task

Correct trials —> N400 effect is also shown in **categorization task** (red shade)

ERP results – Late positivity (P600 effect)

P600 effect is shown in both groups in **recognition task** only (blue shade) Syntactic processing / Integration effort index (Aurnhammer et al., 2023)

Conclusions

Summary

Behavioral results:

	RECOGNITION	CATEGORIZATON					
Group	Adults better than children						
Task	No effect of task						

- Adults significantly better than children in both tasks
- No significant difference between tasks

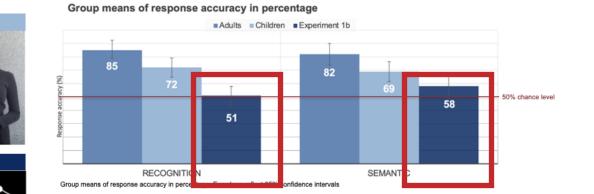
ERP results:

	RECOGNITION	CATEGORIZATON
Adults	N400 - P600	N400
Children	N400 - P600	N400 (correctly identified trials)

- Adults: N400 in recognition and categorization
- Children: N400 in recognition; in categorization, after additional analysis
- For both group, P600 in recognition but not in categorization

Open questions

Why no N400 in categorization task for child group?


- Task is too hard
- Categorization task was always the second task -> noisy data
- Small sample (n=24)
- High variability

Future directions

Behavioural results

EXPERIMENT 1

 Results from experiment 1a (symbolic gestures) are not replicated with low level visual stimuli

ARIANNA COLOMBANI | IDEALAB SUMMER SCHOOL 2023 | UNIVERSITÄT POSTAM

Conclusions

- Despite the ambiguous learning context
- No instruction on the task
- No associative cues
- Naive to gestural communication languages (i.e., sign languages)

Children and adults could:

- form word-gesture associations (recognition task)
- associate the gestures with the word meaning (categorization task)

Gesture as an **integral part of language** Gesture as an **ecologic language input**

Next studies

Thesis structure

Title: Cross-situational learning of word-gesture pairs from infancy to adulthood: an exploration of behavioral, eye-tracking, and ERP data

	Year 1 – Macquarie University		Year 2 – Universität Potsdam		Year 3 – Universität Potsdam
Exp.1	Cross-situational learning of word-gesture pairs in children and adults: a behavioral and event-related potential study	Exp.2	Cross-situational learning of word-gesture pairs in toddlers: an eye-tracking and pupillometry study	Exp.3	Cross-situational learning of word-gesture pairs in toddlers: an eye-tracking and pupillometry study
ይይ ይይ	Children (8–11) Adults (18–35)	ዲደ ዲደ	Toddlers (1–3)	ጜጜ ጜጜ	Infants (12–14 m.o)
9	Novel gestures + familiar words Cross-situational learning EEG	9	Novel gestures + familiar words Cross-situational learning Eye-tracking / pupillometry	\bigcirc	Novel gestures + non-words + novel objects Cross-situational learning Eye-tracking / pupillometry

Thank you

arianna.colombani@uni-potsdam.de